Introduction
The reference PDF files that are included, contain the detailed information for each web service call and its elements. The level of detail may initially make the document difficult to navigate, so this brief outline will define the common terms, and how to navigate within the document.
This outline uses the Canship Web Services Reference PDF as an example, but it applies to any other reference for Canpar’s add on web services.

Terms
Note that these terms are not solely their technical definitions. Instead, they are described in the context of the reference.
Web Service Calls: A web service (WS) call is when your application prepares a WS request, and passes it to Canpar’s servers for a response. The call and response is the action of these web services.

Methods: Methods are the specific commands being sent in web service calls. For example, you will make a web service call with the rateShipment method.
Elements (outlined in the content model): The elements are the options being passed along in the method, or returned from the method. For example, in the rateShipment request method, one of the elements is the destination postal code. In the response, one of the elements is the freight charge.
Types: The type specifies what data type an element is. For example, the postal code element is a string of characters. The freight charge is a floating decimal point number.
Complex Types: Some elements contain embedded elements that allow them to be reused. These reusable groups of elements are called complex types. For example, there is a “shipment” complex type, which contains the address, postal code, name, etc. So in the rateShipment method, there is a destination address element, which is a complex type of “address”. The single destination address element actually contains multiple elements inside the address complex type.
Terms within the element descriptions
When viewing the reference, there is a “description” column beside each element in the content model. Most of the fields are self explanatory, but these three should be defined:

Mandatory (Y/N): If an element is mandatory, this will be Y. Not all elements in a method are required to be filled out when making the WS call. For example, the postal code is a mandatory field, but specifying the dimensions is not mandatory.
Input/output: Some fields (particularly in complex types, where elements get reused) are either only used for input, or only used for output. So for example, the freight charge is an “output” only element, because it gets returned from a WS call, rather than allowing the programmer to input it.
“Internal use only”: Sometimes the description says “internal use only”, and is usually only part of an output element. This means that you can ignore the element. For example, the “inserted_on” element is a dateTime of when the record was inserted into Canpar’s database.
Navigating the reference PDFs
Bookmarks

[image: image1.png]&= [P canpar Rating Web Service
= Methods
[P getavailableServices
[P getprofile
[P getProfiles
[P getversion
[P rateshipment
[P searchcanadapost
[P submitwanifest
[P complex Types
& [P canship Business Web Service
[wethods
[P complex Types

The PDF files have each method and complex type laid out in a grouping of bookmarks. Most PDF readers, including Adobe Reader, have a “bookmarks” tab on the side, to allow you to jump to different methods and complex types.
It should be noted that there are multiple web services – such as the “rating” web service and the “business” web service. These contain different methods, and simply groups the methods into easier-to-categorize sections.

Methods

[image: image2.png]Method: getAvailableServices

Description

Returns the available CANPAR services between two postal codes

Input (Literal)

Requests the CANPAR services available based on the shipment criteria

Element Type Description
: SEQUENCE
request GetAvailableServicesRq
Output (Literal)

Response indicating the the

available CANPAR services based on the shi

Element

Type

Description

+ SEQUENCE

return

GetAvailableServicesRs

When you select a method from the bookmarks, you will be taken to a section that shows the description of the method, followed by the inputs and the outputs.

In most of the cases, the input and output will consist of a single element called “request”, with a complex type that is named after the method, followed by Rq (request) or Rs (response). In the example pictured, these would be GetAvailableServicesRq and GetAvailableServicesRs respectively.

If you click on the type (eg GetAvailableServiceRq), it will jump to the information for that complex type, within the PDF file. See below.

Viewing complex types

[image: image3.png]Complex Type: GetAvailableServicesRs

e

Response indicsing th avaisbie CANPAR sanoss based o ths spment dtsis

Derived By
Resticing anyType

Content Model

Contains siements a5 defined i the folowing tbie.

[Component.

[Type

[Description

ScouenG

Descripion: Eror retumed based on spested
shipment dctais.

Max. Size: N Mandsatory (YIN): . Nullable (YIN):
. Detauitvalue: N

Valoes: A

inputs output: Ouput

GeAvaiabiesenioesre
et

[m———

input output: Ouipet

When you click on an element’s “type”, it will jump to that particular complex type.
The complex type information shows a description, and most importantly, a content model. The content model is the breakdown of each element used within the request, and shows the element name (under the “component” column), the type (and you can click on the complex type name to jump to it), and the description of the element.
Note that a complex type can contain elements that are, in turn, complex types themselves. You may end up clicking through multiple complex types as you go deeper into the request.
Summary
By understanding the terminology (particularly “methods” and “complex types”), and by understanding that you can click on the complex type name within the “type” column of the content model, it should be simple to navigate the reference documents. Jumping between complex types within complex types may get you “lost” in the document at first, but it will quickly begin to crystallize as you begin to use the WS methods in your software.
